Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Epidemics ; 37: 100519, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487716

ABSTRACT

Rapid transmission of coronavirus disease 2019 (COVID-19) was observed in the Shincheonji Church of Jesus, a religious sect in South Korea. The index case was confirmed on February 18, 2020 in Daegu City, and within two weeks, 3081 connected cases were identified. Doubling times during these initial stages (i.e., February 18 - March 2) of the outbreak were less than 2 days. A stochastic model fitted to the time series of confirmed cases suggests that the basic reproduction number (R0) of COVID-19 was 8.5 [95% credible interval (CrI): 6.3, 10.9] among the church members, whereas (R0 = 1.9 [95% CrI: 0.4, 4.4]) in the rest of the population of Daegu City. The model also suggests that there were already 4 [95% CrI: 2, 11] undetected cases of COVID-19 on February 7 when the index case reportedly presented symptoms. The Shincheonji Church cluster is likely to be emblematic of other outbreak-prone populations where R0 of COVID-19 is higher. Understanding and subsequently limiting the risk of transmission in such high-risk places is key to effective control.


Subject(s)
COVID-19 , Humans , Republic of Korea/epidemiology , SARS-CoV-2
2.
Int J Environ Res Public Health ; 18(3)2021 01 31.
Article in English | MEDLINE | ID: covidwho-1055063

ABSTRACT

While the coronavirus disease 2019 (COVID-19) outbreak has been ongoing in Korea since January 2020, there were limited transmissions during the early stages of the outbreak. In the present study, we aimed to provide a statistical characterization of COVID-19 transmissions that led to this small outbreak. We collated the individual data of the first 28 confirmed cases reported from 20 January to 10 February 2020. We estimated key epidemiological parameters such as reporting delay (i.e., time from symptom onset to confirmation), incubation period, and serial interval by fitting probability distributions to the data based on the maximum likelihood estimation. We also estimated the basic reproduction number (R0) using the renewal equation, which allows for the transmissibility to differ between imported and locally transmitted cases. There were 16 imported and 12 locally transmitted cases, and secondary transmissions per case were higher for the imported cases than the locally transmitted cases (nine vs. three cases). The mean reporting delays were estimated to be 6.76 days (95% CI: 4.53, 9.28) and 2.57 days (95% CI: 1.57, 4.23) for imported and locally transmitted cases, respectively. The mean incubation period was estimated to be 5.53 days (95% CI: 3.98, 8.09) and was shorter than the mean serial interval of 6.45 days (95% CI: 4.32, 9.65). The R0 was estimated to be 0.40 (95% CI: 0.16, 0.99), accounting for the local and imported cases. The fewer secondary cases and shorter reporting delays for the locally transmitted cases suggest that contact tracing of imported cases was effective at reducing further transmissions, which helped to keep R0 below one and the overall transmissions small.


Subject(s)
COVID-19/transmission , Basic Reproduction Number , COVID-19/epidemiology , Contact Tracing , Humans , Likelihood Functions , Republic of Korea/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL